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Provocation

= $12



  

Provocation

- 260 MHz 32-bit CPU, 8MiB RAM
- Quad-band GSM
- Bluetooth
- OLED display
- MP3 player
- Li-Poly battery
- $12 qty 1

- 16 MHz 8-bit CPU, 2.5k RAM
- USB serial interface
- Voltage regulator
- $29 qty 1

Chinese low-end hardware platform Western low-end hardware platform

Image: Arduino.cc



  

I Can Has 
Documentation?



  

Downloadable source 
files...



  

Phone OS Source...
● “MKT11B” is a ~7.5GiB source archive, 

downloadable from Baidu



  

But is it Open?
● Docs are either restricted, or unspecified.

● Shanzhai dev environment is Visual Studio plus a 
cracked copy of ARM's RealView compiler

No copyright notice
anywhere



  

China Don't Care
● This technicality does not stop Shanzhai (or most 

Chinese)
– There is a view that Western IP law can be unethical: 

drug companies overcharging for life-saving drugs, $20 
IP burden for mobile phones (or $30 DVDs) is seen as 
stealing food from the poor to give to the rich, etc.

– Enforcement of laws is selective and subjective

Image: icebergtees.com



  

Fruits of Permissive IP 
Environment Image: Rachel Kalmar

Image: Halfdan



  

The West Does Care
● Can't build a western business on 
“stolen” IP
– So ask Mediatek for a license?

● Either no response or
● (For example) $250k pre-payment on order 

volume for access to docs

● Not practical for individuals & startups!



  

Weltschmerz
● So you're saying China startups get to make whole phones...

and Western startups get to make just phone accessories,
and that's a Good Thing?

vs.

Clip art: openclipart.org
Egg Minder: quirky.com
Isuper tank: 247deals.com.au



  

Weltschmerz
Who own copyright to rage faces?



  

Can We Hack the System?



  

Can We Hack the System?
Who own copyright to rage faces?



  

What's at Stake
● We are not lawyers. We're sharing with you our personal views.

– However, law is a tool – and tools are meant to be used

– Also, we only know about laws in the US – things are different elsewhere
● Copyright

– Complex legal landscape:
● Traditional copyright law – do we have a right to make a copies for interoperability and reverse engineering, and to what 

extent can we use their code as reference code?
● DMCA – did we have to defeat any technological measures that control access to the documentation or code?

● CFAA – did we have to access, without authorization, any servers to obtain documents and 
code?

● Contract law – are we under NDA, EULA, TOU, TOS, etc. that could waive or nullify some of 
our Fair-use rights?

● Complex set of issues:
– Check out https://www.eff.org/issues/coders/reverse-engineering-faq

● Patent
– Not just Mediatek, but also any potential patent holder (e.g. GSM)



  

Traditional Copyright
● Expression is copyrightable, but not facts

– A list of phone numbers and names is not 
copyrightable

– “Notwithstanding a valid copyright, a subsequent 
compiler remains free to use the facts contained in 
another's publication to aid in preparing a 
competing work, so long as the competing work 
does not feature the same selection and 
arrangement” – Justice O'Connor (Feist v. Rural)



  

Our Assertion
● Not (yet) court-tested, but here is our 
assertion:
– A list of registers, their addresses, and 

bitfields are like a phone directory

– A list of address and data pairs used to 
initialize a hardware function, is a fact 

● e.g. “set up the PLL by writing these data to 
these addresses in this order”



  

Rules of Engagement
● Courts have found that reverse engineering to understand the 

ideas embodied in code and to achieve interoperability is fair use
– Sega Enterprises Ltd. v. Accolade, Inc., 977 F.2d 1510 (9th Cir. 1992)
– Sony Computer Entertainment, Inc. v. Connectix Corp., 203 F.3d 596 (9th 

Cir. 2000)

● Our rules of engagement:
● Only make copies that are absolutely necessary for reverse engineering
● Reduce datasheets, binaries, and code into facts, then write code or create 

maskworks using our own creative expression based off of these facts
● Do not include any copy/paste code, this includes comments
● Use a pseudocode language for implementation, to avoid “subconscious 

plagiarism” of code motifs



  

Scriptic

● Pseudocode language for 
hardware initializations

#include "scriptic.h"
#include "fernvale-pll.h"

sc_new "set_plls", 1, 0, 0

  sc_write16 0, 0, PLL_CTRL_CON2
  sc_write16 0, 0, PLL_CTRL_CON3
  sc_write16 0, 0, PLL_CTRL_CON0
  sc_usleep 1

  sc_write16 1, 1, PLL_CTRL_UPLL_CON0
  sc_write16 0x1840, 0, PLL_CTRL_EPLL_CON0
  sc_write16 0x100, 0x100, PLL_CTRL_EPLL_CON1
  sc_write16 1, 0, PLL_CTRL_MDDS_CON0
  sc_write16 1, 1, PLL_CTRL_MPLL_CON0
  sc_usleep 1

  sc_write16 1, 0, PLL_CTRL_EDDS_CON0
  sc_write16 1, 1, PLL_CTRL_EPLL_CON0
  sc_usleep 1

  sc_write16 0x4000, 0x4000, PLL_CTRL_CLK_CONDB
  sc_usleep 1

  sc_write32 0x8048, 0, PLL_CTRL_CLK_CONDC
  /* Run the SPI clock at 104 MHz */
  sc_write32 0xd002, 0, PLL_CTRL_CLK_CONDH
  sc_write32 0xb6a0, 0, PLL_CTRL_CLK_CONDC
  sc_end

#if defined(MT6260)
    volatile kal_uint32 i, reg_val, loop_1us;
    
    loop_1us = 13;

    if(mode == PLL_MODE_MAUI)
    {
        // MCU @ 26Mhz
    }
    else if( mode == PLL_MODE_USB_META) /* Need to keep USB connection */
    {
        // change MCU and bus back to @ 26Mhz
        *PLL_CLK_CONDC = 0x8048; // 0xA001_0108, switch to 26Mhz
        // wait for switch takes effect
        while(*PLL_CLK_CONDC & 0x2);
        *PLL_CLK_CONDC = 0x0048; // 0xA001_0108, bit 15 set to 0 to disable digital frequency divider
    }

    {
        // enable HW mode TOPSM control and clock CG of PLL control 

        *PLL_PLL_CON2 = 0x0000; // 0xA0170048, bit 12, 10 and 8 set to 0 to enable TOPSM control 
                                // bit 4, 2 and 0 set to 0 to enable clock CG of PLL control
        *PLL_PLL_CON3 = 0x0000; // 0xA017004C, bit 12 set to 0 to enable TOPSM control

        // enable delay control 
        *PLL_PLLTD_CON0= 0x0000; //0x A0170700, bit 0 set to 0 to enable delay control

        //wait for 3us for TOPSM and delay (HW) control signal stable
        for(i = 0 ; i < loop_1us*3 ; i++);

        //enable and reset UPLL
        reg_val = *PLL_UPLL_CON0;
        reg_val |= 0x0001;
        *PLL_UPLL_CON0  = reg_val; // 0xA0170140, bit 0 set to 1 to enable UPLL and generate reset of UPLL
     

(continues on for several pages)....

Scriptic 
pseudocode

Original 
source code

Manually
extract 
facts



  

DMCA
● No circumvention, no DMCA problem

– None of the files or binaries were 
encrypted or had access controlled by 
any technological measure

– There's a SHA-1 check, but to us, that 
doesn't control access to the data; it 
merely validates its contents



  

CFAA & Contracts
● All files were downloaded off of Baidu or 
Google, from publicly accessible servers
– Origin of files is unknown, and we have no 

connection to the people who posted the files

● We have no NDA with Mediatek, and the 
phones ship with no EULA, TOU, or T&C 
that would waive our right to reverse 
engineer



  

Is it Legal?
● We have carefully designed our research to avoid running 

afoul of the law...but impossible to be 100% sure until we:
– do it
– (possibly) get sued
– Win (if sued)
– Ironically, if it's not litigated, it's not legal precedent in the US

● Also, we're not a lawyers, so don't take any legal advice 
from us. 
– But, we think we have the Fair Use right (at least in the US 

courts) to perform this work, and we're happy to exercise it



  

Patents

● GSM and ARM patent holders 
might have some claim, but it's 
unclear for what and how and 
against who
– It's a whole other talk to give...



  

Goals
1)  Access the MT6260 as a microcontroller (e.g. 

cost-equivalent upgrade to ATMega328U) – 
GSM/BT is a tertiary goal

2)  Create an open (by Western standards) 
hardware and software platform around the 
MT6260

Develop a legal methodology for pulling IP from the 
China ecosystem into the Western ecosystem



  

Picking the Target
● We transitioned to the MT6260 (not the 
MT6250) to future-proof the work a bit.
●Average chipset lifetime is ~1-2 years, and we 
figure it'll take us that long to make progress.

●MT6260 has a 364MHz CPU (vs 260MHz)
●The MT6260DA includes 4MiB NV storage 
on-chip



  

Audience Poll
● For a $3 chip that includes:

– Multiple ARM cores

– 8MiB RAM

– 4MiB EEPROM

– Bluetooth

– GSM

– battery charger

– audio codec

– touchscreen controller, and so forth...

● How many chips are inside?



  

X-Ray

Image credit: Nadya Peek



  

Hardware System Diagram

Fernvale Mainboard
(MT6260DA)

batteryspeaker camera USB1.1 MicroSD BT ArduinoUART

Expansion headerAFE header

GSM RF: 
PA + TxRx + Filters Expansion/breakout board

GSM antenna LCDTSHeadphone

Keypad SIM

Fernvale “Frond”
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Initial Sketches
● Original idea was to make it compatible with the 
Spark Core ecosystem
– 24-pin DIP SoM + castellations on edge for surface-

mountable deployment

– Couldn't pack enough I/O into this footprint



  

Actualized 
Implementation



  

Moar pr0n – with 
expansion boards



  

Design Process
● All footprints and symbols created based on spec tables

– No copy/paste from reference material

● Schematics and layout based on:
– Experience
– Educated guesses

– Reverse engineering (compare/contrast) of several existing 
systems

– Reference materials (e.g. designs published on the Internet 
and obtained off of download sites) – primarily as sanity 
checks



  

Schematics



  

Layout



  

Firmware Reversing

● Started by dumping code from 
an existing phone, the Melrose 
“MP4 Terminator X”



  

Static Analysis
● 64Mbit SPINOR

– Mostly unencrypted, with LZMA-compressed objects
0x0000_0000 media signature “SF_BOOT”
0x0000_0200 bootloader signature “BRLYT”, “BBBB”
0x0000_0800 sector header 1 (“MMM.8”)
0x0000_09BC reset vector table
0x0000_0A10 start of ARM32 instructions – stage 1 bootloader?
0x0000_3400 sector header 2 (“MMM.8”) – stage 2 bootloader?
0x0000_A518 thunk table of some type
0x0000_B704 end of code (padding until next sector)
0x0001_0000 sector header 3( “MMM.8”) – kernel?
0x0001_0368 jump table + runtime setup (stack, etc.)
0x0001_0828 ARM thumb code start – possibly also baseband code
0x0007_2F04 code end
0x0007_2F05 – 0x0009_F0005 padding “DFFF”
0x0009_F006 code section begin “Accelerated Technology / ATI / Nucleus PLUS”
0x000A_2C1A code section end; pad with zeros
0x000A_328C region of compressed/unknown data begin

Identified with binwalk, 
extracted with dd, 
decompressed with 7z



  

Live System Analysis
● Used Tek MDO4104B-6 to analyze 
timing of RS-232 lines vs. SPI ROM 
access
– Identify how much prep work is done by 

internal ROM vs. extracted ROM image

– Identify entry points and transitions 
between bootloader stages



  

Overall Timing



  

Decode RS-232 
Strings



  

Decode SPI ROM 
addresses & data



  

Some Kind of 
Verification...
● Modifying putative boot area 
causes boot to fail

F1: 0000 0000
V0: 0000 0000 [0001]
00: 0000 0000
U0: 0000 0001 [0000]
G0: 0002 0000 [0000]
T0: 0000 00C0
Jump to BL

Init Start
Init done, 0x2210992
Jump to ExtBL, 0x3460

~~~ Welcome to MTK Bootloader V005 (since 2005) ~~~
**=================================================
==**

F1: 5004 0000
F8: 380C 0000
F9: 4800 000B
F9: 4800 000B
F9: 4800 000B
F9: 4800 000B
00: 102C 0004
01: 1005 0000
U0: 0000 0001 [0000]
T0: 0000 00C3
Boot failed, reset …

Original code One-byte modification



  

There's a Phone in my 
Novena...



  

Enter the Machine
● Romulate to assist with First boot 

ROM flow reverse engineering

– Selective MITM between 
MT6260 and SPINOR

– Bypass CS line to FPGA to 
swap in original or  emulated 
ROMs

– Power/reboot control for CI 
automation

– Use Novena + FPGA to 
memory-map MT6260 boot 
ROM into Novena's RAM space

● Instantaneous, live 
experimentation upon 
MT6260 ROM code!

64k BRAM
shadow

64k BRAM
SPI bus

emulation

EIM interface

Novena i.MX6 host

Original 
SPINOR
EEPROM

MT6260
CPU

clk

mosi
misocs_cpu

cs_spi

cs_emu

level
translators

bypass

FPGA

Power control



  

Finding the Verification

● Determine extent of verification
– Use Romulator to poke regions & 

determine extent of hash region

● Determine type of hash
– Static analysis of ROMs shows 

constants for SHA-1, so look for a 
SHA-1 signature



  

Found it!
● SHA-1 hash appended to intbl region

F1: 0000 0000
V0: 0000 0000 [0001]
00: 0000 0000
U0: 0000 0001 [0000]
G0: 0002 0000 [0000]
T0: 0000 00C0
Jump to BL

Init Start
Init done, 0x17ba72
food toyomama, 0x3460

~~~ Welcome to MTK Bootloader V005 (since 2005) ~~~
**===================================================**



  

Dynamic Code 
Manipulation via radare2
● SPI ROM is now a 64k window 
available via mmap() on Linux

● Port radare2 to treat 64k mmap() 
window as an I/O target
– Include routine to auto-update intbl/extbl 

hash every time ROM is patched
– https://github.com/xobs/radare2/tree/fernvale



  

radare2 example



  

Doing what we can

● UART
● GPIO
● GPT



  

Memory Map



  

Doing what we can



  

Fernly
● Command line environment

– Contains peek, poke, hexdump

– One-off programs to search for 
patterns

● Must fit within extbl
– That's okay, it's relatively small



  

First up: UART
● Same UART as in many other 
Mediatek products

● Part of reference manual we had
● No IRQ required
● putchar() and getchar()



  

Next up: GPIO

● Also very easy
● Also part of reference manual 
we had

● No IRQ required
● Not very useful at this point



  

Next up: GPT

● Necessary for periodic tick
● Also in reference manual



  

Christopher Polk / Getty Images



  

The (One) IRQ is 
Standardized on ARM
Exception Offset
Reset 0
Undefined Instruction 4
SWI 8
Prefetch Abort 12
Data Abort 16
Reserved 20
IRQ 24
FIQ 28



  

The interrupt problem
MT6205B

MT6235



  

Try to analyze what 
we have
● Locate ROM, dump it
● Analyze SPI ROM with IDA
● Find other ROMs online and 
analyze them

● Look at manuals for similar chips



  

Found a function

● void func(int, (void *)(), char *)
– func(30, isr30, “SPI”)

– func(18, isr18, “GPT Handler”)



  

Back to 
MTK11B.1308
● Remember that 7.5GiB source archive?
● Customized to the MT6260
● Source of an OS:

– IRQ module exists in source form
● cirq/inc/intrCtrl_MT6260.h

– Complete memory map definition in header files
● regbase/inc/reg_base_mt6260.h

– Not as good as a datasheet, but it will do!



  

IRQ Problem: Solved
● We know how to unmask IRQs
● We know how to acknowledge IRQs
● For some reason, IRQs are off-by-5

– func(30, ispi, “SPI”) → IRQ35

– func(18, igpt, “GPT Handler”) → IRQ23



  

NuttX port
● Used by Osmocom
● Multitasking support

– Thanks to GPT and IRQ

● No memory protection
– ARM7EJ has no MMU
– Only example of ARMv5 on ARM7

● At this point, Goal #1 is basically reached
– Many features yet to be implemented

● LCD
● SPI
● Audio



  

There's a Phone in my 
Novena...



  

Getting code onto 
Fernvale



  

Boot - Mediatek

ROM intbl extbl

OS1bl 2bl

memtestfactory



  

fernvale-usb-loader

● Open-licensed
● Writes to /dev/ttyUSB0

ROM usbdl fernly NuttX



  

Towards an “open” boot

● Closed Mediatek – intbl and 1bl
– Set up clocks, PSRAM

● No reference manuals
● How can we set up the chip at 
boot?



  

Scriptic
● Simple command language

– Very similar problem to SoC boot scripts

● Can distill facts down into scripts
● Scripts are not Turing-complete

– Can call C functions

– E.g. PSRAM calibration

● Implemented as assembler macros



  

Scriptic - Commands



  

Scriptic - Basics



  

Scriptic – Functions



  

Scriptic - Masks



  

Wrap-Up
● Draft process for translating “China 
IP” into “Western IP”
– Obtain documentation via public 

download (common practice in China)

– Work within fair-use framework

– Extract facts via scriptic framework to 
prevent subconscious plagiarism



  

Open Platform Compliant to 
Western IP Standards
● Fernvale

– 3-board system, consisting of mainboard, expansion, and 
AFE

– Schematics and layout licensed CC-BY-SA 3.0 + Apache for 
patents

– Custom bootloader and flashing tool under BSD license

– Clang + GCC toolchain (BSD + GPL licensed)

– Runs NuttX (BSD licensed)

● Interested in hardware? Come see us, we have a few 
samples to give to qualified developers



  

Special Thanks

● Shout out to .mudge for 
enabling this research!



  

Q&A

Thanks for your attention!

@xobs   @bunniestudios
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