

Fernvale:
A Reverse Engineered MT6260 Dev Platform

bunnie & xobs
@bunniestudios & @xobs

31c3

Provocation

= $12

Provocation

- 260 MHz 32-bit CPU, 8MiB RAM
- Quad-band GSM
- Bluetooth
- OLED display
- MP3 player
- Li-Poly battery
- $12 qty 1

- 16 MHz 8-bit CPU, 2.5k RAM
- USB serial interface
- Voltage regulator
- $29 qty 1

Chinese low-end hardware platform Western low-end hardware platform

Image: Arduino.cc

I Can Has
Documentation?

Downloadable source
files...

Phone OS Source...
● “MKT11B” is a ~7.5GiB source archive,

downloadable from Baidu

But is it Open?
● Docs are either restricted, or unspecified.

● Shanzhai dev environment is Visual Studio plus a
cracked copy of ARM's RealView compiler

No copyright notice
anywhere

China Don't Care
● This technicality does not stop Shanzhai (or most

Chinese)
– There is a view that Western IP law can be unethical:

drug companies overcharging for life-saving drugs, $20
IP burden for mobile phones (or $30 DVDs) is seen as
stealing food from the poor to give to the rich, etc.

– Enforcement of laws is selective and subjective

Image: icebergtees.com

Fruits of Permissive IP
Environment Image: Rachel Kalmar

Image: Halfdan

The West Does Care
● Can't build a western business on
“stolen” IP
– So ask Mediatek for a license?

● Either no response or
● (For example) $250k pre-payment on order

volume for access to docs

● Not practical for individuals & startups!

Weltschmerz
● So you're saying China startups get to make whole phones...

and Western startups get to make just phone accessories,
and that's a Good Thing?

vs.

Clip art: openclipart.org
Egg Minder: quirky.com
Isuper tank: 247deals.com.au

Weltschmerz
Who own copyright to rage faces?

Can We Hack the System?

Can We Hack the System?
Who own copyright to rage faces?

What's at Stake
● We are not lawyers. We're sharing with you our personal views.

– However, law is a tool – and tools are meant to be used

– Also, we only know about laws in the US – things are different elsewhere
● Copyright

– Complex legal landscape:
● Traditional copyright law – do we have a right to make a copies for interoperability and reverse engineering, and to what

extent can we use their code as reference code?
● DMCA – did we have to defeat any technological measures that control access to the documentation or code?

● CFAA – did we have to access, without authorization, any servers to obtain documents and
code?

● Contract law – are we under NDA, EULA, TOU, TOS, etc. that could waive or nullify some of
our Fair-use rights?

● Complex set of issues:
– Check out https://www.eff.org/issues/coders/reverse-engineering-faq

● Patent
– Not just Mediatek, but also any potential patent holder (e.g. GSM)

Traditional Copyright
● Expression is copyrightable, but not facts

– A list of phone numbers and names is not
copyrightable

– “Notwithstanding a valid copyright, a subsequent
compiler remains free to use the facts contained in
another's publication to aid in preparing a
competing work, so long as the competing work
does not feature the same selection and
arrangement” – Justice O'Connor (Feist v. Rural)

Our Assertion
● Not (yet) court-tested, but here is our
assertion:
– A list of registers, their addresses, and

bitfields are like a phone directory

– A list of address and data pairs used to
initialize a hardware function, is a fact

● e.g. “set up the PLL by writing these data to
these addresses in this order”

Rules of Engagement
● Courts have found that reverse engineering to understand the

ideas embodied in code and to achieve interoperability is fair use
– Sega Enterprises Ltd. v. Accolade, Inc., 977 F.2d 1510 (9th Cir. 1992)
– Sony Computer Entertainment, Inc. v. Connectix Corp., 203 F.3d 596 (9th

Cir. 2000)

● Our rules of engagement:
● Only make copies that are absolutely necessary for reverse engineering
● Reduce datasheets, binaries, and code into facts, then write code or create

maskworks using our own creative expression based off of these facts
● Do not include any copy/paste code, this includes comments
● Use a pseudocode language for implementation, to avoid “subconscious

plagiarism” of code motifs

Scriptic

● Pseudocode language for
hardware initializations

#include "scriptic.h"
#include "fernvale-pll.h"

sc_new "set_plls", 1, 0, 0

 sc_write16 0, 0, PLL_CTRL_CON2
 sc_write16 0, 0, PLL_CTRL_CON3
 sc_write16 0, 0, PLL_CTRL_CON0
 sc_usleep 1

 sc_write16 1, 1, PLL_CTRL_UPLL_CON0
 sc_write16 0x1840, 0, PLL_CTRL_EPLL_CON0
 sc_write16 0x100, 0x100, PLL_CTRL_EPLL_CON1
 sc_write16 1, 0, PLL_CTRL_MDDS_CON0
 sc_write16 1, 1, PLL_CTRL_MPLL_CON0
 sc_usleep 1

 sc_write16 1, 0, PLL_CTRL_EDDS_CON0
 sc_write16 1, 1, PLL_CTRL_EPLL_CON0
 sc_usleep 1

 sc_write16 0x4000, 0x4000, PLL_CTRL_CLK_CONDB
 sc_usleep 1

 sc_write32 0x8048, 0, PLL_CTRL_CLK_CONDC
 /* Run the SPI clock at 104 MHz */
 sc_write32 0xd002, 0, PLL_CTRL_CLK_CONDH
 sc_write32 0xb6a0, 0, PLL_CTRL_CLK_CONDC
 sc_end

#if defined(MT6260)
 volatile kal_uint32 i, reg_val, loop_1us;

 loop_1us = 13;

 if(mode == PLL_MODE_MAUI)
 {
 // MCU @ 26Mhz
 }
 else if(mode == PLL_MODE_USB_META) /* Need to keep USB connection */
 {
 // change MCU and bus back to @ 26Mhz
 *PLL_CLK_CONDC = 0x8048; // 0xA001_0108, switch to 26Mhz
 // wait for switch takes effect
 while(*PLL_CLK_CONDC & 0x2);
 *PLL_CLK_CONDC = 0x0048; // 0xA001_0108, bit 15 set to 0 to disable digital frequency divider
 }

 {
 // enable HW mode TOPSM control and clock CG of PLL control

 *PLL_PLL_CON2 = 0x0000; // 0xA0170048, bit 12, 10 and 8 set to 0 to enable TOPSM control
 // bit 4, 2 and 0 set to 0 to enable clock CG of PLL control
 *PLL_PLL_CON3 = 0x0000; // 0xA017004C, bit 12 set to 0 to enable TOPSM control

 // enable delay control
 *PLL_PLLTD_CON0= 0x0000; //0x A0170700, bit 0 set to 0 to enable delay control

 //wait for 3us for TOPSM and delay (HW) control signal stable
 for(i = 0 ; i < loop_1us*3 ; i++);

 //enable and reset UPLL
 reg_val = *PLL_UPLL_CON0;
 reg_val |= 0x0001;
 *PLL_UPLL_CON0 = reg_val; // 0xA0170140, bit 0 set to 1 to enable UPLL and generate reset of UPLL

(continues on for several pages)....

Scriptic
pseudocode

Original
source code

Manually
extract
facts

DMCA
● No circumvention, no DMCA problem

– None of the files or binaries were
encrypted or had access controlled by
any technological measure

– There's a SHA-1 check, but to us, that
doesn't control access to the data; it
merely validates its contents

CFAA & Contracts
● All files were downloaded off of Baidu or
Google, from publicly accessible servers
– Origin of files is unknown, and we have no

connection to the people who posted the files

● We have no NDA with Mediatek, and the
phones ship with no EULA, TOU, or T&C
that would waive our right to reverse
engineer

Is it Legal?
● We have carefully designed our research to avoid running

afoul of the law...but impossible to be 100% sure until we:
– do it
– (possibly) get sued
– Win (if sued)
– Ironically, if it's not litigated, it's not legal precedent in the US

● Also, we're not a lawyers, so don't take any legal advice
from us.
– But, we think we have the Fair Use right (at least in the US

courts) to perform this work, and we're happy to exercise it

Patents

● GSM and ARM patent holders
might have some claim, but it's
unclear for what and how and
against who
– It's a whole other talk to give...

Goals
1) Access the MT6260 as a microcontroller (e.g.

cost-equivalent upgrade to ATMega328U) –
GSM/BT is a tertiary goal

2) Create an open (by Western standards)
hardware and software platform around the
MT6260

Develop a legal methodology for pulling IP from the
China ecosystem into the Western ecosystem

Picking the Target
● We transitioned to the MT6260 (not the
MT6250) to future-proof the work a bit.
●Average chipset lifetime is ~1-2 years, and we
figure it'll take us that long to make progress.

●MT6260 has a 364MHz CPU (vs 260MHz)
●The MT6260DA includes 4MiB NV storage
on-chip

Audience Poll
● For a $3 chip that includes:

– Multiple ARM cores

– 8MiB RAM

– 4MiB EEPROM

– Bluetooth

– GSM

– battery charger

– audio codec

– touchscreen controller, and so forth...

● How many chips are inside?

X-Ray

Image credit: Nadya Peek

Hardware System Diagram

Fernvale Mainboard
(MT6260DA)

batteryspeaker camera USB1.1 MicroSD BT ArduinoUART

Expansion headerAFE header

GSM RF:
PA + TxRx + Filters Expansion/breakout board

GSM antenna LCDTSHeadphone

Keypad SIM

Fernvale “Frond”

F
er

nv
al

e
“B

la
de

”F
ernval e “S

por e”

Initial Sketches
● Original idea was to make it compatible with the
Spark Core ecosystem
– 24-pin DIP SoM + castellations on edge for surface-

mountable deployment

– Couldn't pack enough I/O into this footprint

Actualized
Implementation

Moar pr0n – with
expansion boards

Design Process
● All footprints and symbols created based on spec tables

– No copy/paste from reference material

● Schematics and layout based on:
– Experience
– Educated guesses

– Reverse engineering (compare/contrast) of several existing
systems

– Reference materials (e.g. designs published on the Internet
and obtained off of download sites) – primarily as sanity
checks

Schematics

Layout

Firmware Reversing

● Started by dumping code from
an existing phone, the Melrose
“MP4 Terminator X”

Static Analysis
● 64Mbit SPINOR

– Mostly unencrypted, with LZMA-compressed objects
0x0000_0000 media signature “SF_BOOT”
0x0000_0200 bootloader signature “BRLYT”, “BBBB”
0x0000_0800 sector header 1 (“MMM.8”)
0x0000_09BC reset vector table
0x0000_0A10 start of ARM32 instructions – stage 1 bootloader?
0x0000_3400 sector header 2 (“MMM.8”) – stage 2 bootloader?
0x0000_A518 thunk table of some type
0x0000_B704 end of code (padding until next sector)
0x0001_0000 sector header 3(“MMM.8”) – kernel?
0x0001_0368 jump table + runtime setup (stack, etc.)
0x0001_0828 ARM thumb code start – possibly also baseband code
0x0007_2F04 code end
0x0007_2F05 – 0x0009_F0005 padding “DFFF”
0x0009_F006 code section begin “Accelerated Technology / ATI / Nucleus PLUS”
0x000A_2C1A code section end; pad with zeros
0x000A_328C region of compressed/unknown data begin

Identified with binwalk,
extracted with dd,
decompressed with 7z

Live System Analysis
● Used Tek MDO4104B-6 to analyze
timing of RS-232 lines vs. SPI ROM
access
– Identify how much prep work is done by

internal ROM vs. extracted ROM image

– Identify entry points and transitions
between bootloader stages

Overall Timing

Decode RS-232
Strings

Decode SPI ROM
addresses & data

Some Kind of
Verification...
● Modifying putative boot area
causes boot to fail

F1: 0000 0000
V0: 0000 0000 [0001]
00: 0000 0000
U0: 0000 0001 [0000]
G0: 0002 0000 [0000]
T0: 0000 00C0
Jump to BL

Init Start
Init done, 0x2210992
Jump to ExtBL, 0x3460

~~~ Welcome to MTK Bootloader V005 (since 2005) ~~~
**=================================================
==**

F1: 5004 0000
F8: 380C 0000
F9: 4800 000B
F9: 4800 000B
F9: 4800 000B
F9: 4800 000B
00: 102C 0004
01: 1005 0000
U0: 0000 0001 [0000]
T0: 0000 00C3
Boot failed, reset …

Original code One-byte modification



  

There's a Phone in my 
Novena...



  

Enter the Machine
● Romulate to assist with First boot 

ROM flow reverse engineering

– Selective MITM between 
MT6260 and SPINOR

– Bypass CS line to FPGA to 
swap in original or  emulated 
ROMs

– Power/reboot control for CI 
automation

– Use Novena + FPGA to 
memory-map MT6260 boot 
ROM into Novena's RAM space

● Instantaneous, live 
experimentation upon 
MT6260 ROM code!

64k BRAM
shadow

64k BRAM
SPI bus

emulation

EIM interface

Novena i.MX6 host

Original 
SPINOR
EEPROM

MT6260
CPU

clk

mosi
misocs_cpu

cs_spi

cs_emu

level
translators

bypass

FPGA

Power control



  

Finding the Verification

● Determine extent of verification
– Use Romulator to poke regions & 

determine extent of hash region

● Determine type of hash
– Static analysis of ROMs shows 

constants for SHA-1, so look for a 
SHA-1 signature



  

Found it!
● SHA-1 hash appended to intbl region

F1: 0000 0000
V0: 0000 0000 [0001]
00: 0000 0000
U0: 0000 0001 [0000]
G0: 0002 0000 [0000]
T0: 0000 00C0
Jump to BL

Init Start
Init done, 0x17ba72
food toyomama, 0x3460

~~~ Welcome to MTK Bootloader V005 (since 2005) ~~~
===

Dynamic Code
Manipulation via radare2
● SPI ROM is now a 64k window
available via mmap() on Linux

● Port radare2 to treat 64k mmap()
window as an I/O target
– Include routine to auto-update intbl/extbl

hash every time ROM is patched
– https://github.com/xobs/radare2/tree/fernvale

radare2 example

Doing what we can

● UART
● GPIO
● GPT

Memory Map

Doing what we can

Fernly
● Command line environment

– Contains peek, poke, hexdump

– One-off programs to search for
patterns

● Must fit within extbl
– That's okay, it's relatively small

First up: UART
● Same UART as in many other
Mediatek products

● Part of reference manual we had
● No IRQ required
● putchar() and getchar()

Next up: GPIO

● Also very easy
● Also part of reference manual
we had

● No IRQ required
● Not very useful at this point

Next up: GPT

● Necessary for periodic tick
● Also in reference manual

Christopher Polk / Getty Images

The (One) IRQ is
Standardized on ARM
Exception Offset
Reset 0
Undefined Instruction 4
SWI 8
Prefetch Abort 12
Data Abort 16
Reserved 20
IRQ 24
FIQ 28

The interrupt problem
MT6205B

MT6235

Try to analyze what
we have
● Locate ROM, dump it
● Analyze SPI ROM with IDA
● Find other ROMs online and
analyze them

● Look at manuals for similar chips

Found a function

● void func(int, (void *)(), char *)
– func(30, isr30, “SPI”)

– func(18, isr18, “GPT Handler”)

Back to
MTK11B.1308
● Remember that 7.5GiB source archive?
● Customized to the MT6260
● Source of an OS:

– IRQ module exists in source form
● cirq/inc/intrCtrl_MT6260.h

– Complete memory map definition in header files
● regbase/inc/reg_base_mt6260.h

– Not as good as a datasheet, but it will do!

IRQ Problem: Solved
● We know how to unmask IRQs
● We know how to acknowledge IRQs
● For some reason, IRQs are off-by-5

– func(30, ispi, “SPI”) → IRQ35

– func(18, igpt, “GPT Handler”) → IRQ23

NuttX port
● Used by Osmocom
● Multitasking support

– Thanks to GPT and IRQ

● No memory protection
– ARM7EJ has no MMU
– Only example of ARMv5 on ARM7

● At this point, Goal #1 is basically reached
– Many features yet to be implemented

● LCD
● SPI
● Audio

There's a Phone in my
Novena...

Getting code onto
Fernvale

Boot - Mediatek

ROM intbl extbl

OS1bl 2bl

memtestfactory

fernvale-usb-loader

● Open-licensed
● Writes to /dev/ttyUSB0

ROM usbdl fernly NuttX

Towards an “open” boot

● Closed Mediatek – intbl and 1bl
– Set up clocks, PSRAM

● No reference manuals
● How can we set up the chip at
boot?

Scriptic
● Simple command language

– Very similar problem to SoC boot scripts

● Can distill facts down into scripts
● Scripts are not Turing-complete

– Can call C functions

– E.g. PSRAM calibration

● Implemented as assembler macros

Scriptic - Commands

Scriptic - Basics

Scriptic – Functions

Scriptic - Masks

Wrap-Up
● Draft process for translating “China
IP” into “Western IP”
– Obtain documentation via public

download (common practice in China)

– Work within fair-use framework

– Extract facts via scriptic framework to
prevent subconscious plagiarism

Open Platform Compliant to
Western IP Standards
● Fernvale

– 3-board system, consisting of mainboard, expansion, and
AFE

– Schematics and layout licensed CC-BY-SA 3.0 + Apache for
patents

– Custom bootloader and flashing tool under BSD license

– Clang + GCC toolchain (BSD + GPL licensed)

– Runs NuttX (BSD licensed)

● Interested in hardware? Come see us, we have a few
samples to give to qualified developers

Special Thanks

● Shout out to .mudge for
enabling this research!

Q&A

Thanks for your attention!

@xobs @bunniestudios

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76

